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Abstract. The composite-fermion (CF) picture offers a simple intuitive way of understanding
many of the surprising properties of a strongly interacting two-dimensional electron fluid in a large
magnetic field. The simple way in which the mean-field CF picture describes the low-lying bands of
angular momentum multiplets for any value of the applied magnetic field is illustrated and compared
with the results of exact numerical diagonalization of small systems. The reason for the success
of the CF approach is discussed in some detail, and a CF hierarchy picture of the incompressible
quantum fluid states is introduced. The CF picture is used to provide an understanding of the energy
spectrum and photoluminescence of systems containing both electrons and valence band holes.

1. Introduction

The study of the electronic properties of quasi-two-dimensional (2D) systems has resulted in a
number of remarkable discoveries in the past two decades [1–3]. Among the most interesting
of these are the integral [4] and fractional [5] quantum Hall effects. In both of these effects,
incompressible states of a 2D electron liquid are found at particular values of the electron
density for a given value of the magnetic field applied normal to the 2D layer.

The integral quantum Hall effect (IQHE) is rather simple to understand. The incom-
pressibility results from a cyclotron energy gap, h̄ωc, in the single-particle spectrum. When all
states below the gap are filled and all states above it are empty, it takes a finite energy h̄ωc to
produce an infinitesimal compression. Excited states consist of electron–hole pair excitations
and require a finite excitation energy. Both localized [6] and extended single-particle states are
necessary to understand the experimentally observed behaviour of the magnetoconductivity [7].

The fractional quantum Hall effect (FQHE) is more difficult to understand and more
interesting in terms of new basic physics. The energy gap that gives rise to the Laughlin [8]
incompressible fluid state is completely the result of the interaction between the electrons.
The elementary excitations are fractionally charged Laughlin quasiparticles, which satisfy
fractional statistics [9]. The standard techniques of many-body perturbation theory are
incapable of treating FQH systems because of the complete degeneracy of the single-particle
levels in the absence of the interactions. Laughlin [8] was able to determine the form of the
ground-state wavefunction and of the elementary excitations on the basis of physical insight
into the nature of the many-body correlations. Striking confirmation of Laughlin’s picture
was obtained by exact diagonalization of the interaction Hamiltonian within the subspace
of the lowest Landau level of small systems [10]. Jain [11], Lopez and Fradkin [12], and
Halperin et al [13] have extended Laughlin’s approach and developed a composite-fermion
(CF) description of the 2D electron gas in a strong magnetic field. This CF description has
offered a simple picture for the interpretation of many experimental results. However, the
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underlying reason for the validity of many of the approximations used with the CF approach
is not completely understood [14].

The object of this review is to present a simple and understandable summary of the CF
picture as applied to FQH systems. Exact numerical calculations for up to eleven electrons on
a spherical surface will be compared with the predictions of the mean-field CF picture. The
CF hierarchy [15] will be introduced, and its predictions compared with numerical results. It
will be shown that sometimes the mean-field CF hierarchy correctly predicts Laughlin-like
incompressible ground states, and that sometimes it fails.

The CF hierarchy depends on the validity of the mean-field approximation. This seems to
work well in predicting not only the Laughlin–Jain families of incompressible ground states
at particular values of the applied magnetic field, but also in predicting the lowest-lying band
of states at any value of the magnetic field. The question of when the mean-field CF picture
works and why [14] will be discussed in some detail. As first suggested by Haldane [10], the
behaviour of the pseudopotentialV (L) describing the energy of interaction of a pair of electrons
as a function of their total angular momentum L is of critical importance. Some examples of
other strongly interacting 2D fermion systems will be presented, and some problems not yet
completely understood will be discussed.

The plan of the paper is as follows. In section 2 the single-particle states for electrons
confined to a plane in the presence of an applied magnetic field [16] are introduced. The
integral and fractional quantum Hall effects are discussed briefly. Haldane’s idea [10] that the
condensation of Laughlin quasiparticles leads to a hierarchy containing all odd-denominator
fractions is discussed. In section 3 the numerical calculations for a finite number of electrons
confined to a spherical surface in the presence of a radial magnetic field are discussed. Results
for a ten-electron system at different values of the magnetic field are presented. In section 4
the ideas of fractional statistics and the Chern–Simons transformation are introduced. In
section 5 Jain’s CF approach [11] is outlined. The sequence of Jain condensed states (given
by filling factor ν = n(1 + 2pn)−1, where n is any integer and p is a positive integer) is
shown to result from the mean-field approximation. The application of the CF picture to
electrons on a spherical surface is shown to predict the lowest band of angular momentum
multiplets in a very simple way that involves only the elementary problem of addition of
angular momenta [17]. In section 6 the two energy scales, the Landau-level separation h̄ωc
and the Coulomb energy e2/λ (where λ is the magnetic length), are discussed. It is emphasized
that the Coulomb interactions and Chern–Simons gauge interactions between fluctuations
(beyond the mean-field level) cannot possibly cancel for arbitrary values the applied magnetic
field. The reason for the success of the CF picture is discussed in terms of the behaviour
of the pseudopotential V (L) and a kind of ‘Hund’s rule’ for monopole harmonics [14]. In
section 7, a phenomenological Fermi-liquid picture is introduced to describe low-lying excited
states containing three or more Laughlin quasiparticles [18]. In section 8 the CF hierarchy
picture [15] is introduced. Comparison with exact numerical results indicates that the behaviour
of the quasiparticle pseudopotential is of critical importance in determining the validity of this
picture at a particular level of the hierarchy. In section 9 systems containing electrons and
valence band holes are investigated [19]. The photoluminescence and the role of excitons and
negatively charged exciton complexes is discussed. The final section is a summary.

A book entitled ‘Composite Fermions’ [1] edited by Heinonen has appeared quite recently.
This book contains seven review articles covering different theoretical and experimental aspects
of composite fermions, as well as numerous references to earlier review articles [2] and to
original literature. The present review has a different scope and emphasis from these earlier
reviews. The ones closest to the current review are those of Jain and Kamilla [1] and of
Jain [2]. These papers introduce the CF model and propose wavefunctions describing fractional
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filling by multiplying non-interacting wavefunctions for integral filling by a Jastrow–Laughlin
correlation factor. After projecting onto the lowest Landau level, these wavefunctions are
compared with the eigenfunctions obtained from exact diagonalization of small systems. For
states belonging to the Laughlin–Jain sequence ν = n(1 + 2pn)−1 the overlap is very close to
unity. A brief discussion of the Jain–Goldman CF hierarchy and of the operators D (which
introduces Jastrow correlations), C (charge conjugation), and L (which increases the filling
factor ν by unity) is given. The other theoretical reviews emphasize particular problems: the
CF picture of the ν = 1/2 state (Simon), edge states (Johnson and Kirczenow), the formal
many-body field theory of the interaction beyond the mean-field level (Lopez and Fradkin),
etc, none of which are considered in the present work.

The main emphasis of the present paper is on understanding why the CF mean-field picture
works at all. This picture involves two completely different energy scales (Coulomb, ∝√

B,
and Chern–Simons, ∝B), and the CF interactions beyond the mean-field level cannot possibly
cancel for arbitrary values of B as originally suggested [11]. The conclusions we reach make
use of the ideas of fractional parentage from nuclear and atomic physics and depend critically
on the interaction pseudopotential. Understanding how the pseudopotential affects the validity
of the mean-field approximation’s predictions allows us to investigate other related systems
like electrons in higher Landau levels, charged fermion complexes (like the charged excitons),
and Laughlin quasiparticles in a partially filled shell. A new and better understanding of the
behaviour of fractional fillings of higher Landau levels (like ν = 7/3 and 11/5), of the CF
hierarchy, and of systems containing valence band holes as well as electrons results. This
material, covered in sections 6 to 9, is unique to the current review.

2. Integral and fractional quantum Hall effects

The Hamiltonian for an electron confined to the x–y plane in the presence of a perpendicular
magnetic field B is

H0 = 1

2µ

(
p +

e

c
A

)2

. (1)

Here µ is the effective mass, p = (px, py, 0) is the momentum operator, and A(x, y) is the
vector potential (whose curl gives B). For the ‘symmetric gauge’, A = 1

2B(y,−x, 0), the
single-particle eigenfunctions [16] are of the form ψnm(r, θ) = e−imθunm(r). The angular
momentum of the state ψnm is −m and its eigenenergy is given by

Enm = 1

2
h̄ωc(2n + 1 + |m| −m). (2)

In these equations, ωc = eB/µc is the cyclotron frequency, n = 0, 1, 2, . . . , and m = 0, ±1,
±2, . . . . The lowest energy states (lowest Landau level) have n = 0 and m = 0, 1, 2, . . . and
energy E0m = 1

2 h̄ωc. It is convenient to introduce a complex coordinate z = re−iθ = x − iy,
and to write the lowest-Landau-level wavefunctions as

ψ0m(z) = Nmz
me−|z|2/4 (3)

where Nm is a normalization constant. In this expression we have used the magnetic length
λ = √

h̄c/eB as the unit of length. The function |ψ0m|2 has its maximum value at a radius rm
which is proportional to

√
m. All single-particle states belonging to a given Landau level are

degenerate, and separated in energy from neighbouring levels by h̄ωc.
If the system has a ‘finite radial range’, then the m-values are restricted to being less

than some maximum value (m = 0, 1, 2, . . . , Nφ − 1). The value of Nφ (the Landau-level
degeneracy) is equal to the total flux through the sample, BC (where C is the area), divided
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by the quantum of flux φ0 = hc/e. The filling factor ν is defined as the ratio of the number
of electrons, N , to Nφ . When ν has an integral value, an infinitesimal decrease in the area C
requires promotion of an electron across the cyclotron gap h̄ωc to the first unoccupied Landau
level, making the system incompressible. This incompressibility together with the existence
of both localized and extended states in the system is responsible for the observed behaviour
of the magnetoconductivity of quantum Hall systems at integral filling factors [7].

In order to construct a many-electron wavefunction (z1, z2, . . . , zN) corresponding to a
completely filled lowest Landau level, the product function which places one electron in each
of the Nφ = N orbitals ψ0m (m = 0, 1, . . . , Nφ − 1) must be antisymmetrized. This can be
done with the aid of a Slater determinant:

 ∝

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN

z2
1 z2

2 · · · z2
N

...
...

...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
exp

(
−1

4

∑
k

|zk|2
)
. (4)

The determinant in equation (4) is the well-known Vandemonde determinant. It is not difficult
to show that it is equal to

∏
i<j (zi − zj ). Of course, Nφ is equal to N (since each of the Nφ

orbitals is occupied by one electron) and the filling factor ν = 1.
Laughlin noticed that if the factor (zi−zj ) arising from the Vandemonde determinant was

replaced by (zi − zj )2p+1, where p was an integer, the wavefunction

 2p+1 ∝
∏
i<j

(zi − zj )2p+1 exp

(
−1

4

∑
i

|zi |2
)

(5)

would be antisymmetric, keep the electrons further apart (and therefore reduce the Coulomb
repulsion), and correspond to a filling factor ν = (2p + 1)−1. This results because the highest
power of zi in the polynomial factor in  2p+1 is (2p + 1)(N − 1) and it must be equal to the
highest orbital index (m = Nφ − 1), giving Nφ − 1 = (2p + 1)(N − 1) and ν = N/Nφ equal
to (2p + 1)−1 in the limit of large systems. The additional factor

∏
i<j (zi − zj )2p multiplying

 m=1 is the Jastrow factor which accounts for correlations between electrons.
It is observed experimentally that states with filling factors ν = 2/5, 3/5, 3/7, etc exhibit

FQH behaviour in addition to the Laughlin ν = (2p + 1)−1 states. Haldane [10] suggested
that a hierarchy of condensed states arose from the condensation of quasiparticles (QPs) of
‘parent’ FQH states. In his picture, Laughlin condensed states of the electron system occurred
whenNφ = (2p + 1)Ne, where the exponent 2p + 1 in equation (5) was an odd integer and the
symbolNe denoted the number of electrons. Condensed QP states occurred whenNe = 2qNQP,
because the number of places available for inserting a QP in a Laughlin state wasNe. Haldane
required the exponent 2q to be even ‘because the QPs are bosons’. This scheme gives rise
to a hierarchy of condensed states which contains all odd-denominator fractions. Haldane
cautioned that the validity of the hierarchy scheme at a particular level depended upon the QP
interactions which were totally unknown.

3. Numerical study of small systems

Haldane [10] introduced the idea of putting a small number of electrons on a spherical surface
of radiusR at the centre of which is a magnetic monopole of strength 2Sφ0. The single-particle
Hamiltonian can be expressed as [20]

H0 = h̄2

2µR2
(L − SR̂)2 (6)
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where L is the angular momentum operator (in units of h̄), R̂ is the unit vector in the radial
direction, and µ is the mass. The components of L satisfy the usual commutation rules
[Lα,Lβ] = iεαβγ Lγ . The eigenstates of H0 can be denoted by |l, m〉; they are eigenfunctions
of L2 and Lz with eigenvalues l(l + 1) and m, respectively. The lowest energy eigenvalue
(shell) occurs for l = S and has energy 1

2 h̄ωc. The nth excited shell has l = S + n, and

En = h̄ωc

2S

[
l(l + 1)− S2

] = h̄ωc
[
n +

1

2
+
n(n + 1)

2S

]
(7)

where the cyclotron energy is equal to h̄ωc = Sh̄2/µR2 and the magnetic length is λ = R/
√
S.

If we concentrate on a partially filled lowest Landau level we have onlyNφ = 2S+1 degenerate
single-particle states (since the electron angular momentum l must be equal to S and its z-
component m can take on values between −l and l). The Hilbert space HMB of N electrons
in theseNφ single-particle states containsNMB = Nφ![N !(Nφ −N)!]−1 antisymmetric many-
body states. The single-particle configurations |m1,m2, . . . , mN 〉 = c†

m1
c†
m2

· · · c†
mN

|vac〉 can
be chosen as a basis of HMB. Here c†

m creates an electron in the single-particle state |l = S,m〉,
and |vac〉 is the vacuum state. The space HMB can also be spanned by the angular momentum
eigenfunctions, |L,M, α〉, where L is the total angular momentum, M its z-component, and
α is a label which distinguishes different multiplets with the same L. If h̄ωc 
 e2/λ, the
diagonalization of the interaction Hamiltonian

HI =
∑
i<j

e2

rij
(8)

in the Hilbert space HMB of the lowest Landau level gives an excellent approximation to
exact eigenstates of an interacting N -electron system. The single-particle configuration
basis is particularly convenient since the many-body interaction matrix elements in this
basis, 〈m1,m2, . . . , mN |HI |m′

1,m
′
2, . . . , m

′
N 〉, are expressed through the two-body ones,

〈m1,m2|HI |m′
1,m

′
2〉, in a very simple way. On the other hand, using the angular momentum

eigenstates |L,M, α〉 allows the explicit decomposition of the total Hilbert space HMB into
total-angular-momentum eigensubspaces. Because the interaction Hamiltonian is a scalar, the
Wigner–Eckart theorem tells us that

〈L′,M ′, α′|HI |L,M, α〉 = δLL′δMM ′Vαα′(L) (9)

where the reduced matrix element

Vαα′(L) = 〈L, α′|HI |L, α〉 (10)

is independent of M . The eigenfunctions of L are simpler to find than those of HI , because
efficient numerical techniques exist for obtaining eigenfunctions of operators with known
eigenvalues. Finding the eigenfunctions of L and then using the Wigner–Eckart theorem
considerably reduces the dimensions of the matrices that must be diagonalized to obtain
eigenvalues of HI . Some matrix dimensions are listed in table 1, where the degeneracy
of the lowest Landau level and the dimensions of the total many-body Hilbert space, NMB,
and of the largest M-subspace, NMB(M = 0), are given for the Laughlin ν = 1/3 state of
systems of six to eleven electrons (the N -electron Laughlin ν = (2p + 1)−1 state occurs at
Nφ = (2p + 1)(N − 1)). For example, in the eleven-electron system at ν = 1/3, the L = 0
block that must be diagonalized to obtain the Laughlin ground state is only 1160 by 1160,
small compared to the total dimension of 1371 535 for the entireM = 0 subspace.

Typical results for the energy spectrum are shown in figure 1 for N = 10 and a few
different values of 2S between 21 and 30. The low-energy bands marked with open circles
and solid lines will be discussed in detail in the following sections. Frames (a) and (f ) show
two L = 0 incompressible ground states: the Laughlin state at ν = 1/3 and the Jain state at
ν = 2/5, respectively. In other frames, a number of QPs form the lowest energy bands.
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Table 1. The Landau-level degeneracy Nφ = 2S + 1 and the dimensions of the total N -electron
Hilbert space, NMB, and of the largestM-subspace, NMB(M = 0), at the filling factor ν = 1/3.

N Nφ NMB NMB(M = 0)

6 16 8008 338

7 19 50388 1656

8 22 319770 8512

9 25 2042975 45207

10 28 13123110 246448

11 31 84672315 1371535

4. Chern–Simons transformation and statistics in 2D systems

Before discussing the Chern–Simons gauge transformation and its relation to particle statistics,
it is useful to look at a system of two particles each of charge −e and mass µ, confined to a
plane, in the presence of a perpendicular magnetic field B = (0, 0, B) = ∇×A(r). Because
A is linear in the coordinate r = (x, y) (e.g., in the symmetric gauge, A(r) = 1

2B(y,−x)),
the Hamiltonian separates into the centre-of-mass (CM) and relative (REL) coordinate pieces,
with R = 1

2 (r1 + r2) and r = r1 − r2 being the CM and REL coordinates, respectively. The
energy spectra ofHCM andHREL are identical to that of a single particle of mass µ and charge
−e. We have already seen that for the lowest Landau levelψ0m = Nmr

me−imφe−r2/4λ2
. For the

relative motion φ is equal to φ1 −φ2, and the interchange of the pair, Pψ(r1, r2) = ψ(r2, r1),
is accomplished by replacing φ by φ +π . In 3D systems, where two consecutive interchanges
must result in the original wavefunction, this implies that eimπ must be equal to either +1 (m
even; bosons) or −1 (m odd; fermions). It is well known [21] that for 2D systems m need not
be an integer. Interchange of a pair of identical particles can give Pψ(r1, r2) = eiθπψ(r1, r2),
where the statistical parameter θ can assume non-integral values leading to anyon statistics.

A Chern–Simons (CS) transformation is a singular gauge transformation [13] in which an
electron creation operator ψ†

e (r) is replaced by a composite particle operator ψ†(r) given by

ψ†(r) = ψ†
e (r) exp

[
iα

∫
d2r′ arg(r − r′)ψ†(r′)ψ(r′)

]
. (11)

Here arg(r − r′) is the angle that the vector r − r′ makes with the x-axis and α is an arbitrary
parameter. The kinetic energy operator can be written in terms of the transformed operator as

K = 1

2µ

∫
d2r ψ†(r)

[
−ih̄∇ +

e

c
A(r) +

e

c
a(r)

]2
ψ(r). (12)

Here

ar′(r) = αφ0

2π

ẑ× (r − r′)
|r − r′|2 (13)

and

a(r) = αφ0

∫
d2r′ ar′(r)ψ†(r′)ψ(r′) (14)

where ẑ is a unit vector perpendicular to the 2D layer. The CS transformation can be thought of
as an attachment to each particle of flux tube carrying a fictitious flux αφ0 (where φ0 = hc/e

is the quantum of flux) and a fictitious charge −e which couples in the standard way to the
vector potential caused by the flux tubes on every other particle. The ar′(r) is interpreted as
the vector potential at position r due to a magnetic flux of strength αφ0 localized at r′, and



Composite fermions in fractional quantum Hall systems R271

(d) 2S=25

E

(b) 2S=26

(a) 2S=27

E

E

(e) 2S=29

(c) 2S=28

2QE's

1QE 1QH

2QH's

Laughlin
ν=1/3 state

1QE+1QH

0 2 4 6 8 10 12
L

E

0 2 4 6 8 10 12
L

(f) 2S=21 (g) 2S=30

1QE+1QH

Jain
ν=2/5 state

quasi-continuum

0.
1 

e2
/λ

3QH's

Figure 1. The energy spectra of ten electrons in the lowest Landau level calculated on a Haldane
sphere with 2S between 21 and 30. The open circles and solid lines mark the lowest energy bands
with the fewest composite-fermion quasiparticles.

a(r) is the total vector potential at position r due to all CS fluxes. The CS magnetic field
associated with the particle at r′ is b(r) = ∇×ar′(r) = αφ0δ(r−r′)ẑ. Because two charged
particles cannot occupy the same position, one particle never senses the magnetic field of other
particles, but it does sense the vector potential resulting from their CS fluxes. The classical
equations of motion are unchanged by the presence of the CS flux, but the quantum statistics
of the particles are changed unless α is an even integer.

For the two-particle system, the vector potential associated with the CS flux ar2(r1)

depends only on the relative coordinate r = r1 − r2. When a(r) is added to A(r), the vector
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potential of the applied magnetic field, the Schrödinger equation has a solution

ψ̃m = e−iαφψm (15)

where ψm is the solution with α = 0 (i.e. in the absence of CS flux). If α is an odd integer,
boson and fermion statistics are interchanged; if α is even, no change in statistics occurs and
electrons are transformed into composite fermions with an identical energy spectrum.

The Hamiltonian for the composite particle system (charged particles with attached flux
tubes) is much more complicated than the original system with α = 0. What is gained by
making the CS transformation? The answer is that one can use the ‘mean-field’ approximation
in which A(r) + a(r), the vector potential of the external plus CS magnetic fields, is replaced
by A(r) + 〈a(r)〉, where 〈a(r)〉 is the mean-field value of a(r) obtained by simply replacing
3(r′) = ψ†(r′)ψ(r′) by its average value 30 in equation (14). A mean-field energy spectrum
can be constructed in which the massive degeneracy of the original partially filled electron
Landau level disappears. One might then hope to treat both the Coulomb interaction and
the CS gauge field interactions among the fluctuations (beyond the mean-field level) by
standard many-body perturbation techniques (e.g. by the random-phase approximation, RPA).
Unfortunately, there is no small parameter for a many-body perturbation expansion unless α,
the number of CS flux quanta attached to each particle, is small compared to unity. However, a
Landau–Silin-type [22] Fermi-liquid approach can take account of the short-range correlations
phenomenologically. A number of excellent papers on anyon superconductivity [23] treat CS
gauge interactions by standard many-body techniques. Halperin and collaborators [13] have
treated the half-filled Landau level as a liquid of composite fermions moving in zero effective
magnetic field. Their RPA–Fermi-liquid approach gives a surprisingly satisfactory account of
the properties of that state.

The vector potential associated with fluctuations beyond the mean-field level is given by
δa(r) = a(r)− 〈a(r)〉. The perturbation to the mean-field Hamiltonian contains both linear
and quadratic terms in δa(r), resulting in both two-body—containing 3(r1)3(r2)—and three-
body—containing 3(r1)3(r2)3(r3)—interaction terms. The three-body interaction terms are
usually ignored, though forα of the order of unity this approximation is of questionable validity.

5. Jain’s composite-fermion picture

Jain noted that in the mean-field approximation, an effective filling factor ν∗ of the composite
fermions was related to the electron filling factor ν by the relation

(ν∗)−1 = ν−1 − 2p. (16)

Remember that ν−1 is equal to the number of flux quanta of the applied magnetic field per
electron, and 2p is the (even) number of CS flux quanta (oriented opposite to the applied
magnetic field) attached to each electron in the CS transformation. Equation (16) implies that
when ν∗ = ±1, ±2, . . . (negative values correspond to the effective magnetic field B∗ seen
by the CFs oriented opposite to B) and a non-degenerate mean-field CF ground state occurs,
then ν = ν∗(1 + 2pν∗)−1. This Jain sequence of condensed states (ν = 1/3, 2/5, 3/7, . . . and
ν = 2/3, 3/5, . . . for p = 1) is the set of FQH states most prominent in experiment. When ν∗

is not an integer, QPs of the neighbouring Jain state will occur.
It is quite remarkable that the mean-field CF picture predicts not only the Jain sequence

of incompressible ground states, but also the correct band of low-energy states for any value
of the applied magnetic field. This is very nicely illustrated for the case of N electrons on
a Haldane sphere. When the monopole strength seen by an electron has the value 2S, the
effective monopole strength seen by a CF is 2S∗ = 2S−2p(N−1). This equation reflects the
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fact that a given CF senses the vector potential produced by the CS flux on all other particles,
but not its own CS flux. In table 2 the ten-particle system is described for a number of values
of 2S between 29 and 15. The Laughlin ν = 1/3 state occurs at 2S3 = 3(N − 1) = 27. For
values of 2S different from this value, 2S− 2S3 = ±NQP (‘+’ corresponds to quasiholes, QH,
and ‘−’ to quasielectrons, QE). Let us apply the CF description to the ten-electron spectra
in figure 1. At 2S = 27, we take p = 1 and attach two CS flux quanta to each electron.
This gives 2S∗ = 9, so the ten CFs completely fill the 2S∗ + 1 states in the lowest angular
momentum shell (lowest Landau level). There is a gap h̄ω∗

c = h̄eB∗/µc to the next shell,
which is responsible for the incompressibility of the Laughlin state. Just as |S| played the
role of the angular momentum of the lowest shell of electrons, l∗ = |S∗| plays the role of the
CF angular momentum and 2|S∗| + 1 is the degeneracy of the CF shell. Thus, the states with
2S = 26 and 28 contain a single quasielectron (QE) and quasihole (QH), respectively. For the
QE state, 2S∗ = 8, and the lowest shell of angular momentum l∗0 = 4 can accommodate only
nine CFs. The tenth is the QE in the l∗1 = l∗0 + 1 = 5 shell, giving the total angular momentum
L = 5. For the QH state, 2S∗ = 10, and the lowest shell can accommodate eleven CFs each
with angular momentum l∗0 = 5. The one empty state (QH) gives L = l∗ = 5. For 2S = 25
we obtain 2S∗ = 7, and there are two QEs each of angular momentum l∗1 = 9/2 in the first
excited CF shell. Adding the angular momenta of the two QEs gives the band of multiplets
L = 0, 2, 4, 6, and 8. Similarly, for 2S = 29 we obtain 2S∗ = 11, and there are two QHs each
with l∗0 = 11/2, resulting in the allowed pair states at L = 0, 2, 4, 6, 8, and 10. At 2S = 21,
the lowest shell with l∗0 = 3/2 can accommodate only four CFs, but the other six CFs exactly
fill the excited l∗1 = 5/2 shell. The resulting incompressible ground state is the Jain ν = 2/5
state, since ν∗ = 2 for the two filled shells. A similar argument leads to ν∗ = −2 (the minus
sign means B∗ oriented opposite to B) and ν = 2/3 at 2S = 15. At 2S = 30, the addition of
three QH angular momenta of l∗0 = 6 gives the following band of low-lying multiplets: L = 1,
32, 4, 52, 62, 72, 8, 92, 10, 11, 12, 13, and 15. As demonstrated on an example in figure 1,
this simple mean-field CF picture correctly predicts the band of low-energy multiplets for any
number of electrons N and for any value of 2S.

Table 2. The effective CF monopole strength 2S∗, the numbers of CF quasiparticles (quasielectrons,
NQE, and quasiholes, NQH), the angular momentum of the lowest CF shell l∗, the CF and electron
filling factors ν∗ and ν, and the angular momenta L of the lowest-lying band of multiplets for a
ten-electron system at 2S between 29 and 15.

2S 29 28 27 26 25 21 15

2S∗ 11 10 9 8 7 3 −3

NQH 2 1 0 0 0 0 0

NQE 0 0 0 1 2 6 6

l∗0 11/2 5 9/2 4 7/2 3/2 3/2

ν∗ 1 2 −2

ν 1/3 2/5 2/3

L 0, 2, 4, 6, 8, 10 5 0 5 0, 2, 4, 6, 8 0 0

6. Energy scales and the electron pseudopotentials

The mean-field composite-fermion picture is remarkably successful in predicting the low-
energy multiplets in the spectrum of N electrons on a Haldane sphere. It was suggested
originally that this success resulted from the cancellation of the Coulomb and Chern–Simons
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gauge interactions among fluctuations beyond the mean-field level. In figure 2, we show the
lowest bands of multiplets for eight non-interacting electrons and for the same number of
non-interacting mean-field CFs at 2S = 21. The energy scale associated with the CS gauge
interactions which convert the electron system in frame (a) to the CF system in frame (b) is
h̄ω∗

c ∝ B. The energy scale associated with the electron–electron Coulomb interaction is
e2/λ ∝ √

B. The Coulomb interaction lifts the degeneracy of the non-interacting electron
bands in frame (a). However, for very large value of B the Coulomb energy can be made
arbitrarily small compared to the CS energy (as marked with a shaded rectangle in figure 2),
i.e. to the separation between the CF Landau levels. The energy separations in the mean-field
CF model are completely wrong, but the structure of the low-lying states (i.e., which angular
momentum multiplets form the low-lying bands) is very similar to that of the fully interacting
electron system and completely different from that of the non-interacting electron system.
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2QE+2QH
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Figure 2. The energy spectra of eight (a) non-interacting electrons and (b) non-interacting com-
posite fermions. The characteristic energy of the Coulomb interaction is marked in frame (a) with
a shaded rectangle.

6.1. Two-fermion problem

An intuitive picture of why this occurs can be obtained by considering the two-fermion
problem. The relative (REL) motion of a pair of electrons (ij) is described by a coordinate
zij = zi − zj = rije−iφij , and for the lowest Landau level its wavefunction contains a factor
zmij , wherem = 1, 3, 5, . . .. If every pair of particles has identical behaviour, the many-particle
wavefunction must contain a similar factor for each pair giving a total factor

∏
i<j z

m
ij . As

we have seen, the highest power of zi in this product is m(N − 1). If m(N − 1) is equal to
Nφ−1 = 2S, the maximum value of the z-component of the single-particle angular momentum,
the Laughlin ν = m−1 wavefunction results. For electrons, the mth cyclotron orbit, whose
radius is rm, encloses a flux mφ0 (i.e. πr2

mB = mφ0). For a Laughlin ν = m−1 state the pair
function must have a radius rm = r1

√
m. Let us describe the CF orbits by radius 3m̃ and require

that the m̃th orbit enclose m̃ flux quanta. It is apparent that if a flux tube carrying two flux
quanta (oriented opposite to the applied magnetic field B) is attached to each electron in the
CS transformation of the ν = 1/3 state, the smallest orbit of radius 3m̃=1 has exactly the same
size as rm=3. Both orbits enclose three flux quanta of the applied field, but the CF orbit also
encloses the two oppositely oriented CS flux quanta attached to the electrons to form the CFs.
In the absence of electron–electron interactions, the energies of these orbits are unchanged,
since they still belong to the degenerate single-particle states of the lowest Landau level.



Composite fermions in fractional quantum Hall systems R275

In the mean-field approximation the CS fluxes are replaced by a spatially uniform magnetic
field, leading to an effective fieldB∗ = B/m. The orbits for the CF pair states in the mean-field
approximation are exactly the same as those of the exact CS Hamiltonian. The smallest orbit
has radius 3m̃=1 equivalent to the electron orbit rm=3. However, in the mean-field approx-
imation, the energies are changed (because ω∗

c = eB∗/µc replaces ωc). This energy change
leads to completely incorrect mean-field CF energies, but the mean-field CF orbitals give the
correct structure to the low-lying set of multiplets.

In the presence of a repulsive interaction, the low-lying energy states will have the largest
possible value of m. For a monopole strength 2S = m(N − 1), where m is an odd integer,
every pair can have radius rm and avoid the large repulsion associated with r1, r3, . . . , rm−2.
These ideas can be made somewhat more rigorous by using methods of atomic and nuclear
physics for studying angular momentum shells of interacting fermions.

6.2. Two-body interaction pseudopotential

As first suggested by Haldane [10], the behaviour of the interacting many-electron system
depends entirely on the behaviour of the two-body interaction pseudopotential, which is defined
as the interaction energy V of a pair of electrons as a function of their pair angular momentum.
In the spherical geometry, in order to allow for meaningful comparison of the pseudopotentials
obtained for different values of 2S (and thus different single-electron angular momenta l), it is
convenient to use the ‘relative’ angular momentum R = 2l − L12 rather than L12 (the length
of L̂12 = l̂1 + l̂2). The pair states with a given R = m (an odd integer) obtained on a sphere for
different 2S are equivalent and correspond to the pair state on a plane with the relative (REL)
motion described by angular momentum m and radius rm. The pair state with the smallest
allowed orbit (and largest repulsion) has R = 1 on a sphere or m = 1 on a plane, and larger
R and m means larger average separation. In the limit of λ/R → 0 (i.e., either 2S → ∞ or
R → ∞), the pair wavefunctions and energies calculated on a sphere for R = m converge to
the planar ones (ψ0m and its energy).

The pseudopotentials V (R) are plotted in figure 3 for a number of values of the monopole
strength 2S. The open circles mark the pseudopotential calculated on a plane (R = m).
At small R the pseudopotentials rise very quickly with decreasing R (i.e. separation).
More importantly, they increase more quickly than linearly as a function of L12(L12 + 1).
The pseudopotentials with this property form a class of so-called ‘short-range’ repulsive
pseudopotentials [14]. If the repulsive interaction has short range, the low-energy many-
body states must, to the extent that it is possible, avoid pair states with the smallest values of
R (or m) and the maximum two-body repulsion.

6.3. Fractional grandparentage

It is well known in atomic and nuclear physics that the eigenfunction of an N -fermion system
of total angular momentum L can be written as∣∣lN , Lα〉 =

∑
L12

∑
L′α′
GLα,L′α′(L12)

∣∣l2, L12; lN−2, L′α′;L〉
. (17)

Here, the totally antisymmetric state
∣∣lN , Lα〉

is expanded in the basis of states∣∣l2, L12; lN−2, L′α′;L〉
which are antisymmetric under permutation of particles 1 and 2 (which

are in the pair eigenstate of angular momentum L12) and under permutation of particles
3, 4, . . . , N (which are in the (N − 2)-particle eigenstate of angular momentum L′). The
labels α (and α′) distinguish independent states with the same angular momentum L (and L′).
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Figure 3. The pseudopotentials of the Coulomb interaction in the lowest Landau level calculated
on a Haldane sphere with 2S = 15, 20, and 25 (solid triangles, diamonds, and circles, respectively),
and on a plane (open circles).

The expansion coefficient GLα,L′α′(L12) is called the coefficient of fractional grandparentage
(CFGP).

For a simple three-fermion system, equation (17) reduces to∣∣l3, Lα〉 =
∑
L12

FLα(L12)
∣∣l2, L12; l;L

〉
(18)

andFLα(L12) is called the coefficient of fractional parentage (CFP). In the lowest Landau level,
the individual fermion angular momentum l is equal to S, half the monopole strength, and the
number of independent multiplets of angular momentum L that can be formed by addition of
the angular momenta of three identical fermions is given in table 3.

Low-energy many-body states must, to the extent it is possible, avoid parentage from pair
states with the largest repulsion (pair states with maximum angular momenta Lij or minimum
R). In particular, we expect that the lowest energy multiplets will avoid parentage from the
pair state with R = 1. If R = 1, i.e. L12 = 2l − 1, the smallest possible value of the total
angular momentum L of the three-fermion system is obtained by addition of vectors L12 (of
length 2l − 1) and l3 (of length l), and it is equal to |(2l − 1) − l| = l − 1. Therefore, the
three-particle states with L < l− 1 must not have parentage from R = 1. It is straightforward
to show that if L < l − (2p− 1), where p = 1, 2, 3, . . . , the three-electron multiplet at L has
no fractional parentage from R � 2p − 1. The multiplets that must avoid one, two, or three
smallest values of R are underlined with an appropriate number of lines in table 3 and listed
in table 4. This gives the results in table 4, the values of 2L that avoid R = 1, 3, and 5 for
various values of 2l. The L = 0 states that appear at 2l = 6 (R � 3), 2l = 10 (R � 5), and
2l = 14 (R � 7) are the only states for these values of 2l that can avoid one, two, or three
largest pseudopotential parameters, respectively, and therefore are the non-degenerate (L = 0)
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Table 3. The number of times an L-multiplet appears for a system of three electrons of angular
momentum l. Top: even values of 2l; bottom: odd values of 2l. Blank spaces are equivalent to
zeros.

2l 2S = 0 2 4 6 8 10 12 14 16 18 20 22 24 26

2 1
4 1 1
6 1 1 1 1 1
8 1 2 1 1 1 1 1

10 1 1 1 2 1 2 1 1 1 1 1

12 1 2 1 2 2 2 1 2 1 1 1 1

14 1 1 1 2 1 3 2 2 2 2 1 2 1

2l 2S = 1 3 5 7 9 11 13 15 17 19 21 23 25 27

3 1
5 1 1 1
7 1 1 1 1 1 1
9 1 1 1 2 1 1 1 1 1

11 1 1 1 2 2 1 2 1 1 1 1 1

13 1 1 1 2 2 2 2 2 1 2 1 1 1

Table 4. The allowed values of 2L for a three-electron system that must have R � 3, R � 5, and
R � 7. The listed 2L-values correspond to the underlined L-multiplets in table 3.

2l 2L (R � 3) 2L (R � 5) 2L (R � 7)

6 0
7 3
8 2
9 3, 5

10 0, 4, 6 0
11 3, 5, 7 3
12 2, 62, 8 2
13 3, 5, 7, 92 3, 5
14 0, 4, 6, 82, 10 0, 4, 6 0

ground states. They are the Laughlin ν = 1/3, 1/5, and 1/7 states.
If only a single multiplet belongs to an angular momentum subspace, its form is completely

determined by the requirement that it is an eigenstate of angular momentum with a given
eigenvalue L. The wavefunction and the type of many-body correlations do not depend on
the form of the interaction pseudopotential. For interactions that do not have short range, the
state that avoids the largest two-body repulsion (e.g. the L = 0 multiplet at 2l = 6) might
not have the lowest total three-body interaction energy and be the ground state. If more than
one multiplet belongs to a given angular momentum eigenvalue (e.g., two multiplets occur at
L = 3 for 2l = 8), the interparticle interaction must be diagonalized in this subspace (two
dimensional for 2l = 8 and L = 3). Whether the lowest energy eigenstate in this subspace
has Laughlin-type correlations, i.e. avoids as much as possible the largest two-body repulsion,
depends critically on the short range of the interaction pseudopotential. For the Coulomb
interaction, we find that the Laughlin correlations occur and, whenever possible, the CFP of
the lowest-lying multiplets virtually vanishes (it would vanish exactly for an ‘ideal’ short-range
pseudopotential which increases infinitely quickly with decreasing R). For example, for the
lower energy eigenstate at L = 3 and 2l = 8, the CFP for R = 1 is less than 10−3. A similar
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thing occurs at 2S = 9 for L = 9/2, at 2S = 10 for L = 4 and 6, at 2S = 11 for L = 9/2,
11/2, and 15/2, at 2S = 12 for L = 5, 6, 7, and 9, at 2S = 13 for L = 11/2, 13/2, 15/2,
17/2, and 21/2, and at 2S = 14 for L = 62, 7, 8, 9, 10, and 12. At 2S = 14 for L = 6 there
are three allowed multiplets. The diagonalization of the Coulomb interaction gives the lowest
state that avoids R = 1 (CFP ∼ 10−7) and R = 3 (CFP < 10−2), and the next-lowest state
that avoids R = 1 (CFP < 10−5) but orthogonality to the lowest state requires that it has
significant parentage from R = 3 (CFP ≈ 0.34).

One can see that the set of angular momentum multiplets L that can be constructed at
a given value of 2l without parentage from pair states with R = 1 is identical to the set of
all allowed multiplets L at 2l∗ = 2l − 4. For a short-range repulsion (e.g. the Coulomb
repulsion in the lowest Landau level), these multiplets will be (to a good approximation) the
lowest energy eigenstates (the appropriate CFP for the actual eigenstates will be very small
although not necessarily zero). More generally, in the lowest Landau level (remember that
l = S), the set of multiplets L that can be constructed at given 2S without parentage from
R � 2p − 1 (i.e. with R � 2p + 1 for all pairs; p = 1, 2, . . . ) is identical to the set of all
allowed multipletsL at 2S∗ = 2S−2p(N−1). The multipletsL forming the lowest Coulomb
energy band at a given 2S are all multiplets allowed at 2S∗. But 2S∗ = 2S− 2p(N − 1) is just
the effective magnetic monopole strength in the mean-field CF picture! Thus the CF picture
with 2p attached flux quanta simply picks the subset of angular momentum multiplets which
have no parentage from pair states with R � 2p − 1, and neglects the long-range part of the
pseudopotential, V (R) for R � 2p + 1.

6.4. Definition of the short-range pseudopotential

For systems containing more than three fermions in an angular momentum shell, the simple
addition of angular momentum to determine the smallest possible L that has parentage from
pair states with L12 = 2l − 1 is of no help. Instead, we make use of the following operator
identity:

L̂2 +N(N − 2)l̂2 =
∑
i<j

L̂2
ij . (19)

Here L̂ = ∑
i l̂i and L̂ij = l̂i + l̂j . The identity is easily proved by writing out the expression

for L̂2 and for
∑
i<j L̂

2
ij and eliminating

∑
i<j (l̂i · l̂j ) from the pair of equations. Taking matrix

elements of equation (19) between states
∣∣lN , Lα〉

described by equation (17) gives

L(L + 1) +N(N − 2)l(l + 1) = 〈
lN , Lα

∣∣ ∑
i<j

L̂2
ij

∣∣lN , Lα〉

= 1

2
N(N − 1)

∑
L12

GLα(L12)L12(L12 + 1) (20)

where

GLα(L12) =
∑
L′α′

∣∣GLα,L′α′(L12)
∣∣2
. (21)

The coefficients of grandparentage satisfy the relation∑
L12

∑
L′α′
GLα,L′α′(L12)GLβ,L′α′(L12) = δαβ. (22)

Of course, the energy of the multiplet
∣∣lN , Lα〉

is given by

Eα(L) = 1

2
N(N − 1)

∑
L12

GLα(L12)V (L12) (23)
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where V (L12) is the electron pseudopotential.
It is important to make the following observations:

(i) The expectation value of
∑
i<j L̂

2
ij in a many-body state

∣∣lN , Lα〉
increases as L(L + 1),

but it is totally independent of α.
(ii) If the pseudopotential VH(L12) were a linear function of L̂2

12 (we refer to VH as the
‘harmonic pseudopotential’), all many-body multiplets with the same value of L would
be degenerate.

(iii) The difference6V (L12) = V (L12)−VH(L12) between the actual pseudopotential V and
its harmonic part VH lifts this degeneracy. If NL many-body multiplets of VH occur at
angular momentum L, the anharmonic term 6V in the pseudopotential causes them to
‘repel one another’ and results in a band of NL non-degenerate multiplets.

Because the expectation value of
∑
i<j L̂

2
ij in a many-body state of angular momentum L

increases as L(L + 1), a strict Hund’s rule holds for harmonic pseudopotentials: for VH that
increases as a function of L12, the highest energy state is always at the maximum possible
value of L equal to LMAX = Nl−N(N − 1)/2, and the lowest energy state is at the minimum
allowed value of L equal to LMIN. If VH decreases as a function of L12, the opposite occurs:
the lowest energy state is at LMAX, and the highest energy state is at LMIN (this is a standard
Hund’s rule of atomic physics).

Neither of these Hund’s rules may remain true in the presence of a large anharmonic term
6V . For example, if the number of multiplets NL at a value slightly larger than LMIN is very
large compared to NLMIN , the strong level repulsion due to 6V within this L-subspace can
overcome the difference in the expectation values of VH , and the lowest eigenvalue of V at L
can be lower than that at LMIN. However, only very few multiplets occur at large values of L:
NLMAX = 1 (for M = L = LMAX, the only state is |l, l − 1, . . . , l −N + 1〉), NLMAX−1 = 0,
NLMAX−2 � 1, NLMAX−3 � 1, etc. As a result, breaking of the Hund’s rule that refers to
the behaviour of energy at large L requires stronger anharmonicity than at small L. For the
Coulomb pseudopotential in the lowest Landau level we always find that the highest energy
does indeed occur at LMAX. However, the ability to avoid parentage from pair states having
large Lij often favours many-body states at small L > LMIN with large NL, as prescribed by
the CF picture.

The anharmonicity of the Coulomb pseudopotential in the lowest Landau level (which
increases with increasingL12) is critical for the behaviour of the FQH systems. We have found
that the condition for the occurrence of subbands separated by gaps in the energy spectrum,
and, in particular, for the occurrence of non-degenerate incompressible fluid ground states
at specific values of the filling factor, is that the anharmonic term 6V (L12) is positive and
increases with increasing L12. In other words, the total pseudopotential V (L12)must increase
more quickly than linearly as a function of L12(L12 + 1).

6.5. Hidden symmetry of the short-range repulsion

From our numerical studies we have arrived at the following conjectures:

(i) The Hilbert space HNl of N identical fermions each with angular momentum l contains
subspaces H(p)

Nl of states that have no parentage from R � 2p − 1. The subspaces
H̃(p)

Nl = H(p)

Nl \H(p+1)
Nl can be defined; they hold states without parentage from R � 2p−1,

but with some parentage from R = 2p + 1. Then

HNl = H̃(0)
Nl ⊕ H̃(1)

Nl ⊕ H̃(2)
Nl ⊕ · · · . (24)
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(ii) For an ‘ideal’ short-range repulsive pseudopotentialVSR, for whichVSR(R) 
 VSR(R+2),
the huge difference between energy scales associated with different pair states results in
the following (dynamical) symmetry:

(a) subspaces H̃(p)

Nl are the interaction eigensubspaces,
(b) p is a good quantum number,
(c) the energy spectrum splits into bands (larger p corresponds to lower energy), and
(d) the energy gap above the pth band scales as V (2p − 2)− V (2p).

(iii) For a finite short-range pseudopotential V (increasing more quickly than VH as a function
of L12), the above symmetry is only approximate, but the correlation between energy
and parentage from highly repulsive pair states persists, and so do the gaps in the energy
spectrum. The mixing between neighbouring subbands is weak, although the structure of
energy levels within each subband depends on the form of V (L12) at R � 2p + 1.

(iv) The set of angular momentum multiplets in subspace H(p)

Nl is identical to HNl∗ , where
l∗ = l − p(N − 1).

Although at present we do not have a general analytic proof for the last conjecture, we have
verified it for various small systems and have not found one for which it would fail.

The above conjectures can be immediately translated into the planar geometry. The
harmonic pseudopotential VH(m), used to define the class of short-range pseudopotentials, is
that of a repulsive interaction potential V (r) which is linear in r2. Then,

Hν = H̃(0)
ν ⊕ H̃(1)

ν ⊕ H̃(2)
ν ⊕ · · · (25)

where Hν is the Hilbert space of electrons filling a fraction ν of an infinitely degenerate Landau
level, and subspaces H̃(p)

ν contain states without parentage from m � 2p − 1, but with some
parentage from m = 2p + 1. The (approximate) dynamical symmetry holds for the Coulomb
interaction, and the low-energy band H(p)

ν contains the same angular momentum multiplets as
Hν∗ , with ν∗ defined by the CF prescription in equation (16).

The validity of our conjectures for systems interacting through the Coulomb pseudo-
potential is illustrated in figure 4 for four electrons in the lowest Landau level at 2S = 5, 11,
17, and 23. Different symbols mark bands corresponding to (approximate) subspaces H(p)

Nl

with different p. The same sets of multiplets reoccur for different 2S in bands related by
H(p)

Nl ∼ HNl∗ .

6.6. Comparison with atomic shells: Hund’s rule

Our conjectures (verified by the numerical experiments) are based on the behaviour of systems
of interacting fermions partially filling a shell of degenerate single-particle states of angular
momentum l. This is a central problem in atomic physics and in nuclear shell-model studies
of energy spectra. It is interesting to compare the behaviour of the spherical harmonics of
atomic physics with that of the monopole harmonics considered here. For monopole harmonics
l = S+n, whereS is half of the monopole strength (and can be integral or half-integral) andn is a
non-negative integer. For the lowest angular momentum shell, l = S. For spherical harmonics,
S = 0 and l = n. If in each case electrons are confined to a 2D spherical surface of radius
R, one can evaluate the pair interaction energy V as a function of the pair angular momentum
L12. The resulting pseudopotentials, V (R) for the FQH system in the lowest Landau level,
and V (L12) for atomic shells in a zero magnetic field, are shown in figure 5 for a few small
values of l. In obtaining these results we have restricted ourselves to spin-polarized shells, so
only orbital angular momentum is considered. It is clear that in the case of spherical harmonics
the largest pseudopotential coefficient occurs for the lowest pair angular momentum, exactly
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Figure 4. The energy spectra of four electrons in the lowest Landau level calculated on a Haldane
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l = S, V plotted as a function of relative pair angular momentum R; (b) atomic shell, spherical
harmonics, S = 0, l = n, V plotted as a function of pair angular momentum L.

the opposite of what occurs for monopole harmonics. As a consequence of equation (19),
which relates the total angular momentum L to the average pair angular momentum L12, the
standard atomic Hund’s rule predicts that the energy of a few-electron system in an atomic
shell will, on the average, decrease as a function of total angular momentum, which is opposite
to the behaviour of energy of electrons in the lowest Landau level. The difference between the
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energy spectra of electrons interacting through atomic and FQH pseudopotentials of figure 5
is demonstrated in figure 6, where we plot the result for four electrons in shells of angular
momentum l = 3 and 5. The solid circles correspond to monopole harmonics and the open
ones to spherical harmonics. Note that at LMAX the former give the highest energy and the
latter the lowest. Due to anharmonicity of the pseudopotentials, the behaviour of energy at low
L does not always follow a simple Hund’s rule for either FQH or atomic system. The FQH
ground state for l = 3 occurs at L = 0 (this is the ν = 2/3 incompressible state). However,
for l = 5, the lowest of the three states at L = 2 has lower energy than the only state at
L = 0. This ground state at L = 2 contains one quasihole in the Laughlin ν = 1/3 state and
it is the only four-electron state at this filling in which electrons can avoid parentage from the
R = 1 pair state. Exactly the opposite happens for the atomic system at l = 5, where the
anharmonicity is able to push the highest of the three L = 2 states above the high-energy state
at L = 0.
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Figure 6. The energy spectra of four electrons in a degenerate shell of angular momentum l = 3
(a) and l = 5 (b), interacting through the pseudopotentials of figure 5: open circles—atomic shell
(S = 0 and l = n); solid circles—lowest Landau level (n = 0 and l = S).

6.7. Higher Landau levels

Thus far we have considered only the lowest angular momentum shell (lowest Landau level)
with l = S. The interaction of a pair of electrons in the nth excited shell of angular momentum
l = S+n can easily be evaluated to obtain the pseudopotentialsV (L12) shown in figure 7. Here
we compareVn(L12) as a function ofL12(L12 +1) for n = 0, 1, and 2. It can readily be observed
that Vn=0 increases more quickly than L12(L12 + 1) over the entire range of L12, while Vn=1

and Vn=2 do so only up to a certain value of L12 (i.e., above a certain value of R = 2l − L12)
For n = 1, Vn=1 has short range for R � 3 but is essentially linear in L12(L12 + 1) from R = 1
to 5. For n = 2, Vn=2 has short range for R � 5 but is sublinear in L12(L12 + 1) from R = 1
to 7. More generally, we find that the pseudopotential in the nth excited shell (Landau level)
has short range for R � 2n + 1.

Because the conclusions of the CF picture depend so critically on the short range of the
pseudopotential, they are not expected to be valid for all fractional fillings of higher Landau
levels. For example, the ground state at ν = 2 + 1/3 = 7/3 does not have Laughlin-type
correlations (i.e. electrons in the n = 1 Landau level do not avoid parentage from R = 1) even
if it is non-degenerate (L = 0) and incompressible (as found experimentally [24]).
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Figure 7. The pseudopotentialsV of the Coulomb interaction in the lowest (a), first excited (b), and
second excited (c) Landau levels, calculated on a Haldane sphere, as functions of the squared pair
angular momentumL(L+1). Different symbols correspond to different Landau-level degeneracies
2l + 1.

7. Fermi-liquid model of composite fermions

The numerical results of the type shown in figure 1 have been understood in a very simple way
using Jain’s composite-fermion picture. For the ten-particle system, the Laughlin ν = 1/3
incompressible ground state at L = 0 occurs for 2S = 3(N − 1) = 27. The low-lying excited
states consist of a single QP pair, with the QE and QH having angular momenta lQE = 11/2
and lQH = 9/2. In the mean-field CF picture, these states should form a degenerate band
of states with angular momentum L = 1, 2, . . . , 10. More generally, lQE = (N + 1)/2 and
lQH = (N − 1)/2 for the Laughlin state of an N -electron system, and the maximum value of
L is N . The energy of this band would be E = h̄ω∗

c = h̄ωc/3, the effective CF cyclotron
energy needed to excite one CF from the (completely filled) lowest to the (completely empty)
first excited CF Landau level. From the numerical results, two shortcomings of the mean-field
CF picture are apparent. First, due to the QE–QH interaction (neglected in the CF picture),
the energy of the QE–QH band depends on L, and the ‘magnetoroton’ QE–QH dispersion has
a minimum at L = 5. Second, the state at L = 1 either does not appear, or is part of the
continuum (in an infinite system) of higher energy states above the magnetoroton band.

At 2S = 27 − 1 = 26 and 2S = 27 + 1 = 28, the ground state contains a single
quasiparticle (QE or QH, respectively), whose angular momenta lQE = lQH = N/2 = 5 result
from the CS transformation which gives 2S∗ = 2S − 2(N − 1) = 8 for QE and 10 for QH
(and lQE = S∗ + 1 and lQH = S∗). States containing two identical QPs form lowest energy
bands at 2S = 25 (two QEs) and 2S = 29 (two QHs). The allowed angular momenta of two
identical CF QPs (which are fermions) each with angular momentum lQP are L = 2lQP − j
where j is an odd integer. Of course, lQP depends on 2S in the CF picture, and at 2S = 25
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we have lQE = S∗ + 1 = S − (N − 1) + 1 = 9/2 yielding L = 0, 2, 4, 6, and 8, while at
2S = 29 we have lQH = S∗ = S − (N − 1) = 11/2 and L = 0, 2, 4, 6, 8, 10. More generally,
lQE = (N − 1)/2 and lQH = (N + 1)/2 in the 2QE and 2QH states of an N -electron system,
and the maximum values of L are N − 2 for QEs and N for QHs. As for the magnetoroton
band at 2S = 27, the CF picture does not account for QP interactions and incorrectly predicts
the degeneracy of the bands of 2QP states at 2S = 25 and 27.

The energy spectra of states containing more than one CF quasiparticle can be described
in the following phenomenological Fermi-liquid picture. The creation of an elementary
excitation, QE or QH, in a Laughlin incompressible ground state requires a finite energy,
εQE or εQH, respectively. In a state containing more than one Laughlin quasiparticle, QEs
and/or QHs interact with one another through appropriate QE–QE, QH–QH, and QE–QH
pseudopotentials.

An estimate of the QP energies can be obtained by comparing the energy of a single QE (for
the ten-electron system, the energy of the ground state atL = N/2 = 5 for 2S = 27−1 = 26)
or a single QH (the L = N/2 = 5 ground state at 2S = 27 + 1 = 28) with the Laughlin L = 0
ground state at 2S = 27. There can be finite-size effects here, because the QP states occur at
different values of 2S to the ground state, but using the correct magnetic length λ = R/

√
S

(R is the radius of the sphere) in the unit of energy e2/λ at each value of 2S, and extrapolating
the results as a function ofN−1 to an infinite system, should give reliable estimates of εQE and
εQH for a macroscopic system.

The QP pseudopotentials VQP−QP can be obtained by subtracting from the energies of
the 2QP states obtained numerically at 2S = 25 (2QE), 2S = 27 (QE–QH), and 2S = 29
(2QH) the energy of the Laughlin ground state at 2S = 27 and two energies of appropriate
non-interacting QPs. As for the single QP, the energies calculated at different 2S must be taken
in correct units of e2/λ = √

Se2/R to avoid finite-size effects. This procedure was carried out
in references [18, 26].

In figure 8 we plot the QE–QE and QH–QH pseudopotentials for Laughlin ν = 1/3 and
1/5 states. As we have seen for two electrons (see figure 3), the angular momentum L12 of
a pair of identical fermions in an angular momentum shell (or a Landau level) is quantized,
and the convenient quantum number to label the pair states is R = 2lQP − L12 (on a sphere)
or relative (REL) angular momentum m (on a plane). When plotted as a function of R, the
pseudopotentials calculated for systems containing between six to eleven electrons (and thus
for different QP angular momenta lQP) behave similarly and, for N → ∞ (i.e., 2S → ∞),
they seem to converge to the limiting pseudopotentials VQP−QP(R = m) describing an infinite
planar system.

In figure 9 we plot the QE–QH pseudopotentials for Laughlin ν = 1/3 and 1/5 states. As
for a conduction electron and a valence hole pair in a semiconductor (an exciton), the motion
of a QE–QH pair which does not carry a net electric charge is not quantized in a magnetic
field. The appropriate quantum number to label the states is the continuous wavevector k (or
momentum), which on a sphere is given by k = L/R = L/λ

√
S (remember that L is given

in units of h̄). When plotted as a function of k, the pseudopotentials calculated for systems
containing between six and eleven electrons fall on the same curve that describes a continuous
magnetoroton dispersion VQE−QH(k) of an infinite planar system (the lines in figure 9 are only
to guide the eye). Only the energies for L � 2 are shown in figure 9, since the single QE–QH
pair state atL = 1 is either disallowed (hard core) or falls into the continuum of states above the
magnetoroton band. The magnetoroton minima for the Laughlin ν = 1/3 and 1/5 states occur
at about k0 = 1.4 λ−1 and k0 = 1.1 λ−1, respectively. The magnetoroton band at ν = 1/3 is
well decoupled from the continuum of higher states because the bandwidth ∼0.05e2/λ is much
smaller than the energy gap εQE + εQH = 0.1e2/λ for additional QE–QH pair excitations. At
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Figure 8. The pseudopotentials of a pair of quasielectrons (left) and quasiholes (right) in Laughlin
ν = 1/3 (top) and ν = 1/5 (bottom) states, as functions of relative pair angular momentum R.
Different symbols mark data obtained in the diagonalization of between six and eleven electrons.
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ν = 1/5, the bandwidth ∼0.015e2/λ is closer to the single-particle gap εQE +εQH = 0.021e2/λ

and the state of two magnetorotons each with k ≈ k0 can couple to the highest-enrgy QE–QH
pair states at k � 2k0.

Knowing the QP–QP pseudopotentials and the bare QP energies allows us to evaluate the
energies of states containing three or more QPs. Typical results are shown in figure 10. In frame
(a) we show the energy spectra of three QEs in the Laughlin ν = 1/3 state of eleven electrons.
The spectrum in frame (b) gives energies of three QHs in the nine-electron system at the same
filling. The exact numerical results obtained in diagonalization of the eleven- and nine-electron
systems are represented by plus signs and the Fermi-liquid-picture results are marked by solid
circles. The exact energies above the dashed lines correspond to higher energy states that
contain additional QE–QH pairs. It should be noted that in the mean-field CF picture which
neglects the QP–QP interactions, all of the 3QP states would be degenerate and the energy gap
separating the 3QP states from higher states would be equal to h̄ω∗

c = h̄ωc/3. Although the
fit in figure 10 is not perfect, it is quite good and justifies the use of the Fermi-liquid picture to
describe (compressible) states at ν �= (2p + 1)−1.
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Figure 10. The energy spectra of three quasielectrons (a) and three quasiholes in the Laughlin
ν = 1/3 state. The crosses correspond to the Fermi-liquid calculation using pseudopotentials
from figures 8(a), 8(b); the solid circles give exact spectra obtained in full diagonalization of the
Coulomb interaction of eleven (a) and nine (b) electrons.

8. Composite-fermion hierarchy

The sequence of Laughlin–Jain states with filling factor ν given by ν = ν∗(1 + 2pν∗)−1 where
p = 1, 2, . . . , and the CF filling factor ν∗ is any non-zero integer, is the most prominent
set of condensed states observed experimentally. However, this sequence (together with the
conjugate ‘hole’ states, ν → 1 − ν) does not contain all odd-denominator fractions the way
the Haldane hierarchy scheme does. The question arises quite naturally of how to treat the CF
values of ν∗ which are not integers. The answer leads to the CF approach to the hierarchy of
incompressible quantum fluid ground states [15].

Consider a state of N0 electrons at a monopole strength 2S0 with a filling factor ν0.
The CS transformation that attaches to each electron 2p0 flux quanta oriented opposite to
the applied magnetic field results in the CF system at an effective filling factor ν∗

0 given
by (ν∗

0 )
−1 = ν−1

0 − 2p0 and an effective monopole strength 2S∗
0 = 2S0 − 2p0(N0 − 1).

The procedure for handling non-integral values of CF filling factor ν∗
0 is to set it equal to
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ν∗
0 = n1 + ν1, where n1 is an integer and ν1 is the fractional filling of the CF quasiparticle

level (same sign as n1 for QEs and opposite for QHs). Our problem is then that of placing N1

quasiparticles into 2l1 + 1 available states of a CF shell (Landau level) of angular momentum
l1: the QEs into the lowest empty shell with l1 = |S∗

0 | + n1 + 1, or the QHs into the highest
filled shell with l1 = |S∗

0 | + n1, We now ignore all completely filled and completely empty CF
shells, and reapply the CS transformation by setting S1 = l1 and attaching 2p1 flux quanta to
each of the N1 quasiparticles in the partially filled CF shell. This produces a new type of QPs
and a new QP filling factor ν∗

1 given by (ν∗
1 )

−1 = ν−1
1 − 2p1. If ν∗

1 is an integer, we obtain
daughter states in the hierarchy. If it is not, we write ν∗

1 = n2 + ν2, where ν2 represents the
partial filling of the new QP shell, and repeat the mean-field CF procedure. This leads to the
set of equations

ν−1
l = 2pl + (nl+1 + νl+1)

−1 (26)

where νl is the QP filling factor and 2pl is the number of flux quanta attached to each fermion
at the lth level of the CF hierarchy.

As an example, consider a system of N0 = 12 electrons at 2S0 = 30. We apply the
mean-field CF approximation by attaching to each electron 2p0 = 2 flux quanta. This gives
the effective CF monopole strength 2S∗

0 = 30 − 2(12 − 1) = 8. The lowest CF shell is filled
with nine particles, and there are N1 = 3 quasielectrons in the first excited (n1 = 1) CF shell
of angular momentum l1 = 5. The filling factor at this level of hierarchy is ν∗

0 = 1 + ν1. We
now reapply the CF transformation by attaching 2p1 = 4 flux quanta to each of N1 = 3 QEs
at 2S1 = 10 and obtain 2S∗

1 = 10 − 4(3 − 1) = 2. The lowest CF shell of l1 = 1 is now
completely filled yielding ν∗

1 = 1. Using equation (26) we obtain ν−1
1 = 4 + 1−1 = 5 and

ν−1
0 = 2 + (1 + 1/5)−1 = 17/6.

If the mean-field CF picture worked on all levels of hierarchy, the twelve-electron system
at 2S = 30 should have an incompressible L = 0 ground state corresponding to the filling
factor ν = 6/17. In figure 11(a) we show the low-energy sector of the spectrum calculated
for this system using the Fermi-liquid picture (only the lowest energy states containing three
QEs in the Laughlin ν = 1/3 state are calculated). Indeed, the ν = 6/17 hierarchy ground
state at L = 0 is separated from higher states by a small gap in the twelve-electron spectrum
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Figure 11. (a) The low-energy spectrum of three quasielectrons in the Laughlin ν = 1/3 state
of twelve electrons calculated using the quasielectron pseudopotential from figure 8(a). (b) The
energy spectrum of three quasiholes in the Laughlin ν = 1/3 state of eight electrons obtained in
full diagonalization of the electron–electron Coulomb interaction.
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(although it is not clear that this small gap will persist in the thermodynamic limit [26]).
Though the CF hierarchy picture seems to work in some cases, there are others where it

is clearly in complete disagreement with numerical results. For example, a CF transformation
with 2p0 = 2 applied to an (N0 = 8)-electron system at 2S0 = 18 gives 2S∗

0 = 18−2(8−1) =
4, n1 = 1, and N1 = 3 QEs left in the shell with l1 = 3. Adding the three QE angular
momenta of l1 = 3 gives a low-energy band at L = 0, 2, 3, 4, and 6. Reapplication of the CF
transformation with 2p1 = 2 gives 2S∗

1 = 6 − 2(3 − 1) = 2, i.e. the completely filled lowest
shell, ν∗

1 = 1 (n2 = 1 and ν2 = 0). From equation (26) we get ν1 = 1/3 and ν0 = 4/11. In
figure 11(b) we show the spectrum obtained by exact numerical diagonalization of an eight-
electron system at 2S = 18. It is apparent that the set of multiplets at L = 0, 2, 3, 4, and 6
form the low-energy band. However, the reapplication of the mean-field CF transformation
to the three QEs in the l1 = 3 shell (which predicts an L = 0 incompressible ground state
corresponding to ν = 4/11) is definitely wrong.

The reason why the CF hierarchy picture does not always work is not difficult to understand.
The electron (Coulomb) pseudopotential in the lowest Landau level Ve(R) satisfies the
‘short-range’ criterion (i.e. it increases more quickly with decreasing R than the harmonic
pseudopotential VH ) in the entire range of R, which is the reason for the incompressibility of
the principal Laughlin ν = (2p + 1)−1 states. However, this does not generally hold for the
QP pseudopotentials on higher levels of the hierarchy. In figure 8 we plotted VQE−QE(R) and
VQH−QH(R) for the ν = 1/3 and ν = 1/5 Laughlin states of six to eleven electrons. Clearly,
the QE and QH pseudopotentials are quite different and neither one decreases monotonically
with increasing R. On the other hand, the corresponding pseudopotentials in ν = 1/3 and 1/5
states look similar, only the energy scale is different. The convergence of energies at small
R obtained for larger N suggests that the maxima at R = 3 for QEs and at R = 1 and 5 for
QHs, as well as the minima at R = 1 and 5 for QEs and at R = 3 and 7 for QHs, persist in the
limit of largeN (i.e. for an infinite system on a plane). Consequently, the only incompressible
daughter states of Laughlin ν = 1/3 and 1/5 states are those with νQE = 1 or νQH = 1/3 and
(maybe) νQE = 1/5 and νQH = 1/7. It is clear that no incompressible daughter states of the
parent Laughlin ν = 1/3 state will form at e.g. ν = 4/11 (νQE = 1/3) or 4/13 (νQH = 1/5),
but that they will form (at least, in finite systems [26]) at ν = 6/17 (νQE = 1/5) or 6/19
(νQH = 1/7).

From the CF hierarchy scheme we find the Jain–Laughlin states when the CS trans-
formation is applied directly to electrons (or to holes in a more-than-half-filled level). These
states occur at integral values of ν∗, the effective CF filling factor, and correspond to completely
filling a QP shell. For example, the ν = 2/5 state occurs when ν∗ = 2, and the CFs in the
first excited shell (which are Laughlin QEs of the ν = 1/3 state) have νQP = 1. The angular
momenta of the two lowest CF shells are l∗0 = |S∗| and l∗1 = |S∗| + 1, so they contain 2l∗0 + 1
and 2l∗1 + 1 states, respectively. Since νQP = 1, there are NQP = 2l∗1 + 1 CF quasiparticles.
The total number of states filled by the N fermions is (2l∗0 + 1) + (2l∗1 + 1) = 2NQP − 2, giving
N = 2NQP − 2. For an infinite system this is just Haldane’s relation between the number
of quasiparticles and the number of electrons, N = 2qNQP, for the integer q = 1. This
demonstrates that integrally filled CF shells correspond to νQP = 1, a completely filled shell
of Laughlin QPs. Adding new fermions to a system with νQP = 1 requires creating a new
type of QPs, and the counting of available QP states turns out to be exactly the same in the CF
hierarchy and Haldane’s boson hierarchy pictures. Integral CF filling (i.e., νQP = 1) gives a
valid mean-field picture independent of QP–QP interactions provided that the gap for creating
new QPs is positive. When ν∗ is non-integral, the mean-field picture is valid only at values of
L for which the ‘short-range’ requirement on the pseudopotential VQP−QP(L) is satisfied. The
form of the QP–QP interactions obtained from our numerical calculations makes it clear that
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the mean-field approximation is not valid at certain quasiparticle fillings (e.g. for νQP = 1/3
filling of the quasielectron levels of the electron ν = 1/3 state).

9. Systems containing electrons and valence band holes

There has been a great deal of interest in photoluminescence (PL) of 2D systems in high
magnetic fields. An important ingredient in understanding PL is the negatively charged exciton
(X−). The X− consists of two electrons bound to a valence band hole. If the total spin of the
pair of electrons, Je, is zero, the X− is said to be a singlet (X−

s ); if Je = 1 the X− is called a
triplet (X−

t ). Only the X−
s is bound in the absence of a magnetic field, but in infinite magnetic

field (where only a single Landau level is relevant) only the X−
t is bound in a 2D system. It

often occurs that the photoexcited hole is separated from the plane of the electron system by
a small distance (this can happen, e.g., in wide GaAs quantum wells when the electron gas is
confined to one GaAs/AlGaAs interface by remote ionized donors, and the photoexcited holes
reside close to the other GaAs/AlGaAs interface). Several remarkable effects associated with
electron–hole systems and charged excitons can be understood using the composite-fermion
picture.

9.1. Charged excitons and the hidden symmetry in the lowest Landau level

First let us consider the idealized 2D system at so large a magnetic field that only the lowest
electron and hole Landau levels need be considered. The energy spectrum for a two-electron–
one-hole system at 2S = 20 is shown in figure 12. The triplet X− with angular momentum
lX− = S − 1 is the only bound state, with binding energy ∼0.05e2/λ. A pair of (unbound)
singlet and triplet states occur at the energy equal exactly to the exciton energy EX. In these
so-called ‘multiplicative’ states a neutral exciton X in its ground state is decoupled from the
second electron. Addition of exciton and electron angular momenta LX = 0 and le = S gives
a state of total angular momentum L = S, and addition of two electron spins of 1/2 gives both
Je = 0 and 1 spin configurations.

The occurrence of unbound states atE = EX andL = S is a manifestation of the following
‘hidden symmetry’: because of the exact overlap of electron and hole orbitals in the lowest
Landau level (scaled with the same magnetic length λ), and thus independence of the strength
of interaction of the type of particles involved, the commutator of an operator d†

X that creates
an exciton in itsLX = 0 ground state (on a sphere, d†

X = ∑
m(−1)mc†

mh
†
m, where c†

m and h†
m are

electron and hole creation operators), with the interaction HamiltonianH , is [H, d†
X] = EXd

†
X.

As a result, if  is an eigenstate of Ne electrons and Nh holes with an eigenenergy E and
angular momentum quantum numbers L and M , then the multiplicative state d†

X of Ne + 1
electrons and Nh + 1 holes is also an eigenstate with energy E + EX and the same L and M .
A good quantum number conserved due to the ‘hidden symmetry’ is the number of decoupled
excitons, NX. In particular, the ground state for Ne = Nh = N is the totally multiplicative
state (d†

X)
N |vac〉 with NX = N ; for an infinite system this ground state can be viewed as a

Bose condensate of non-interacting excitons. It can be readily found that the application of
the PL operator that annihilates an optically active exciton (dX) reduces its NX by one, and
therefore that only the multiplicative electron–hole states with NX > 0 are optically active
(have non-vanishing PL intensity). In figure 12, the two multiplicative states at E = EX and
L = S have NX = 1, and all others have NX = 0.

It is essential to realize that two independent symmetries forbid the recombination of a
triplet X− ground state in figure 12:
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Figure 12. The energy spectrum (binding energy versus angular momentum) of a two-electron–
one-hole system in the lowest Landau level at 2S = 20. Open and solid circles mark singlet and
triplet spin configurations, respectively.

• Due to the 2D translational/rotational space invariance, the PL operator dX conserves two
angular momentum quantum numbers. On a sphere, these are L andM , and the resulting
optical selection rule allows only a state with L = S to decay by e–h recombination. On a
plane, these are the projection of total angular momentum (M) and an additional angular
momentum quantum number K associated with partial decoupling of the centre-of-mass
motion of a charged system in a homogeneous magnetic field, and the radiative channel
for an X− is that ofM +K = 0. This (geometrical) symmetry can be broken by collisions,
but persists in systems with a finite quantum well width, finite electron and hole layer
separation, or Landau-level mixing.

• Due to the equal strength of e–e, h–h, and e–h interactions,NX is a good quantum number.
SinceNX is decreased in a PL process, only the multiplicative (NX > 0) states are radiative.
This (dynamical) symmetry is not broken by collisions, and requires breaking electron–
hole orbital symmetry.

Since a number of independent factors are needed to allow for the recombination of a triplet
X−, this complex (in narrow and symmetric quantum wells and in high magnetic fields) is
expected to be a well-defined long-lived quasiparticle. The correlations, optical properties, etc
are expressed more easily in terms of this quasiparticle than in terms of individual electrons
and holes. The finite angular momentum of an X− in spherical geometry (partial decoupling
of the centre-of-mass excitations from the relative motion on a plane) can be viewed as the
formation of a degenerate Landau level of this (charged) quasiparticle. As will be shown later,
the interaction of X− quasiparticles with one another and with electrons can be described using
the ideas familiar in the context of FQH systems (Laughlin correlations, composite fermions,
parentage, etc).
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9.2. Interaction of charged excitons

The simplest system in which to study X−–X− interaction contains four electrons and two
holes. Its energy spectrum at 2S = 17 is shown in figure 13. The low-energy spectrum is
characterized by four bands which we have identified as follows:

(i) The lowest band taking on all even values between L = 0 and 12 consists of a pair of
charged excitons X− (each with angular momentum lX− = S − 1).

(ii) The next band contains an electron with le = S and a negatively charged biexciton X−
2

(a bound state of an X and an X−) with angular momentum lX−
2

= S − 2; the allowed
L-values go from |le − lX−

2
| = 2 to le + lX−

2
− 1 = 14.

(iii) A band of multiplicative states containing an X, an X−, and an electron; it begins at
L = |le − lX−| = 1 and goes to L = le + lX− − 1 = 15.

(iv) A band of multiplicative states containing two neutral excitons and two free electrons; it
takes on all even values of L between zero and 2le − 1 = 16.

One interesting feature of figure 13 is that it gives us the effective pseudopotential VAB(L)

for the interaction of the pair of fermions AB (where A and B can be e, X−, X−
2 , etc) as a

function of angular momentum. As for electrons, it is convenient to use the relative pair angular
momentum R = lA + lB − L. For identical fermions with angular momentum l, the allowed
values of L are 2l − j , where j is an odd integer, i.e., R = 1, 3, 5, . . . , and R � 2l. For
distinguishable fermions A and B, all values of L between |lA − lB| and |lA + lB| are expected,
i.e., R = 0, 1, 2, . . . , and R � 2 min(lA, lB). However, our numerical results display a ‘hard-
core’ repulsion for composite particles, and one or more of the pair states with the largest
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Figure 13. The energy spectrum of a four-electron–two-hole system in the lowest Landau level
calculated on a Haldane sphere with 2S = 17. Different symbols mark states with zero, one, or
two decoupled excitons. The lines connect states identified as pseudopotentials of different pairs
of bound charged complexes.
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values of L (smallest R) are forbidden (i.e. the corresponding pseudopotential parameters are
effectively infinite). For A = X−

n and B = X−
m, the smallest allowed value of R is given by

RMIN
AB = 2 min(n,m) + 1. (27)

The identification of pair states AB in figure 13 (as marked with lines) was possible by
comparing the displayed 4e–2h spectrum with the pseudopotentials of point charge particles
with appropriate angular momenta lA and lB and binding energies εA and εB [19]. The
appropriate values of angular momenta lA and lB, and of the binding energies εA and εB

are obtained by diagonalizing smaller systems (e.g. the 2e–1h system in figure 12 for an
X−), and the point charge pseudopotentials are used to approximate the AB interaction. The
approximate AB energies obtained in this way are rather close to the exact 4e–2h energies. This
implies that, due to different energy scales, the internal dynamics of charged excitons is weakly
coupled to their scattering off one another or off electrons, and allows for the interpretation of
an electron–hole system in terms of well-defined charged excitonic quasiparticles interacting
with one another and with excess electrons through Coulomb-like forces. The slight difference
between the actual pseudopotentials in figure 13 and the pseudopotentials of point charge
particles comes from the larger size of charged excitons and their (nearly frozen) internal
degrees of freedom. The latter can be accounted for phenomenologically by attributing to
each type of composite particles a finite electric polarizability to describe their induced electric
dipole moment in the presence of an electric field of other charged particles. Due to an increased
charge isotropy, the polarization effects are expected to be greatly reduced in larger systems,
and disappear completely in the fluid-type states discussed in the following paragraphs.

9.3. Generalized composite-fermion picture for charged excitons

Suppose we have a system of different (distinguishable) charged fermions (A, B, . . . ). They can
be distinguished either because they are different species (e.g., electrons and charged excitons)
or because they are confined to different, spatially separated layers. If all particles in such
a system repel one another through short-range pseudopotentials (as defined for the electron
FQH systems), one can think of many-body states with Laughlin-type correlations [8,9] given
by a generalized (compare equation (5)) Laughlin–Jastrow factor∏

(z
(A)
i − z(B)j )mAB (28)

where z(A)i is the complex coordinate for the position of the ith fermion of type A, and the
product is over all pairs. The restrictions on the integers mAB are that mAA must be odd,
mBA = mAB, and mAB must not be smaller than certain minimum values RMIN

AB to avoid the
infinite hard cores for all pairs. In a state with correlations given by equation (28), a number of
pair states with largest repulsion are avoided for each pair, RAB � mAB. This is equivalent to
saying that the high-energy collisions (in which any pair of particles would come very close to
one another) are forbidden in such a state. This intuitive property of the Laughlin fluid states
will be very useful in the discussion of collision-assisted X− recombination.

A generalized CF picture can be constructed for a system with Laughlin correlations. In
this picture, fictitious flux tubes carrying an integral number of flux quanta φ0 are attached to
each particle. In the multi-component system, each particle of type A carries flux (mAA −1)φ0

that couples only to charges on all other particles of the same type A and fluxes mABφ0 that
couple to charges on all particles of other types B (A and B are any of the types of fermions).
On a sphere, the effective monopole strength seen by a CF of type A (CF-A) is

2S∗
A = 2S −

∑
b

(mAB − δAB)(NB − δAB). (29)
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For different multi-component systems we expect generalized Laughlin incompressible states
(for two components denoted as [mAA,mBB,mAB]) when all the hard-core pseudopotentials
are avoided and CFs of each kind fill completely an integral number of their CF shells
(e.g. NA = 2l∗A + 1 for the lowest shell). In other cases, the low-lying multiplets are expected
to contain different kinds of CF quasiparticles (generalized QEs or QHs), QP-A, QP-B, . . . , in
the neighbouring incompressible state. It is interesting to realize that the effective monopole
strengths 2S∗

A, i.e. the effective magnetic fields B∗
A seen by particles of different type, are not

generally equal. One can think of effective CS charges and fluxes of different colours, but the
resulting number of different effective CF magnetic fields of different colour can no longer
be regarded as physical reality, and no cancellation between gauge and Coulomb interactions
is possible.

The multi-component (multi-colour) CF picture can be applied to electrons and charged
excitons in an electron–hole system. We have checked that the pseudopotentials describing
interaction of identical composite particles in figure 13 all satisfy the short-range criterion
over the entire range of R. For a pair of different particles, the pseudopotential may increase
sufficiently quickly for some values of R but not the others and, for example, for e− and X−

only the correlations described by exponents me−X− =1 or even, are expected to occur. As an
example, let us consider the 12e–6h system. In figure 14 we present its low-energy spectrum
at 2S = 17, calculated by diagonalizing systems of different combinations of electrons and
composite particles interacting through effective pseudopotentials determined in figure 13.
The following combinations (groupings of 12e and 6h into bound complexes) have the highest
total binding energy and thus form the lowest energy bands in the 12e–6h spectrum: (i) 6X−,
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2
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Figure 14. The approximate lowest energy bands corresponding to different combinations of six
bound charged complexes interacting through appropriate pseudopotentials, in the twelve-electron–
six-hole spectrum in the lowest Landau level, calculated on a Haldane sphere with 2S = 17. The
lines mark lowest subbands of two lowest excited bands.
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(ii) e−–5X−, (iii) e−–4X−–X−
2 , (iv) 2e−–2X−–2X−

2 , (v) 2e−–3X−–X−
3 , (vi) 2e−–3X−–X−

2 ,
(vii) 2e−–4X−. Groupings (ii), (vi), and (vii) also contain neutral excitons that however do not
interact with charged particles due to the hidden symmetry. For each of these groupings, the
CF transformation can be applied to determine correlations and identify the number and type
of quasiparticles that occur in the lowest energy states. For example, for groupings (i)–(iii)
the generalized CF picture makes the following predictions:

(i) FormX−X− = 3 we obtain the Laughlin ν = 1/3 state with total angular momentumL = 0.
Because of the hard core of VX−X− , this is the only state of this grouping.

(ii) We set mX−X− = 3 and me−X− = 1, 2, and 3. For me−X− = 1 we obtain L = 1, 2, 32,
42, 53, 63, 73, 82, 92, 10, and 11. For me−X− = 2 we obtain L = 1, 2, 3, 4, 5, and 6. For
me−X− = 3 we obtain L = 1.

(iii) We set mX−X− = 3, me−X−
2

= 1, mX−X−
2

= 3, and me−X− = 1, 2, or 3. For me−X− = 1 we
obtain L = 2, 3, 42, 52, 63, 72, 82, 9, and 10. For me−X− = 2 we obtain L = 2, 3, 4, 5,
and 6. For me−X− = 3 we obtain L = 2.

In groupings (ii) and (iii), the sets of multiplets obtained for higher values ofme−X− are subsets
of the sets obtained for lower values, and we would expect them to form lower energy bands
since they avoid additional small values of Re−X− . However, note that the (ii) and (iii) states
predicted forme−X− = 3 (atL = 1 and 2, respectively) do not form separate bands in figure 14.
This is because Ve−X− increases more slowly than linearly as a function of L(L + 1) in the
vicinity of Re−X− = 3 (see figure 13). In such a case the CF picture fails [14, 26].

Our conclusion is that different kinds of long-lived fermions (electrons and different
charged excitonic complexes) formed in an electron–hole plasma in high magnetic fields can
exhibit generalized incompressible FQH ground states with Laughlin-type correlations, and
that these states can be described using a generalized CF model.

9.4. Spatially separated electron–hole system

Even in very high magnetic fields (in the lowest Landau level), an asymmetry between e–e,
h–h, and e–h interactions can be introduced by spatially separating 2D electron and hole
layers. Such separation, which occurs for example in asymmetrically doped wide quantum
wells, breaks the hidden symmetry and allows for a rich photoluminescence (PL) spectrum,
which (unlike that for a co-planar system) can therefore be used as a probe of the low-lying
electron–hole states.

Let us consider an ideal system, in which electrons and holes occupy 2D parallel planes
separated by a distance d . The interaction potentials are Vee(r) = Vhh(r) = 1/r and
Veh(r) = −1/

√
r2 + d2. The energy spectrum of a seven-electron–one-hole system is shown

in figure 15 for 2S = 15 and values of d going from 0 to 5 (measured in units of the magnetic
length λ). For d = 5λ, the e–h interaction is weak and, as a first approximation, we can
say that the lowest band of states will consist of the lowest CF band of the electron system
plus the (constant) hole energy. The allowed angular momenta will be given by Le, the
angular momenta of the low-lying electron states, added to the hole angular momentum
lh of length lh = S = 15/2. At 2S = 15, the CF picture for the electrons gives
2S∗ = 2S − 2p(N − 1) = 15 − 2(7 − 1) = 3. The seven electrons fill the l∗0 = 3/2 shell
plus three of the QE states in the shell lQE = 5/2. The resulting electron angular momenta are
Le = 3/2, 5/2, and 9/2. This gives three bands of low-lying states, with total angular momenta
6 � L � 9, 5 � L � 10, and 3 � L � 12, respectively. These three bands can be clearly
distinguished at d = 5λ and the states within each band become nearly degenerate at d ∼ 10λ.
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Figure 15. The energy spectrum of a seven-electron–one-hole system in the lowest Landau level
calculated on a Haldane sphere at 2S = 15, for different values of the separation d between electron
and hole planes. In frames (a) and (b), the circle marks a multiplicative state and solid lines mark
states containing a charged exciton X−. In frame (d), the dashed lines mark the three lowest bands.

For d = 0, it is more useful to consider bound excitonic complexes (X and X−) and
Laughlin quasiparticles of the e−–X− fluid. First consider the multiplicative state with a
single X and six electrons. At 2S = 15 six electrons have the Laughlin ν = 1/3 ground state
since 2S∗ = 15 − 2(6 − 1) = 5 gives a CF shell which accommodates all six CFs. This is the
lowest state at L = 0, marked with a circle in frame (a). For a charge configuration containing
one X− and five electrons, we can use the generalized CF model with me−e− = me−X− = 2.
This gives 2S∗

e = 2S − me−e−(Ne − 1) − me−X− = 5 and 2S∗
X− = 2S − me−X−Ne = 5, and

the angular momenta l∗e = S∗
e = 5/2 and l∗X− = S∗

X− − 1 = 3/2. There is one empty state
in the lowest CF–e− shell giving Le = 5/2, and the CF–X− has LX− = 3/2. Adding these
two angular momenta gives L = 1, 2, 3, and 4 as the lowest band of 5e−–X− states. The
multiplicative state at L = 0 (open circle) and the band of four multiplets containing an X− at
L = 1 to 4 (line) can clearly be seen at d = 0 in frame (a). Although the hidden symmetry is
only approximate at d > 0, these bands can be easily identified at d = 0.5λ in frame (b).

At an intermediate separation of d = 1.75λ in frame (c), neither description used for
d < λ or d 
 λ is valid, and it seems that a low-energy band occurs at L = 0, 1, 2, 32, 4, 5,
and 6. Most probably, the X− unbinds but the hole is still able to bind one electron, forming
an exciton with a significant electric dipole moment. This dipole moment results in repulsion
between the exciton and the remaining six electrons, so the correlations are quite different to
those at d = 0, where the exciton decouples.

The PL spectrum can be evaluated from the eigenfunctions obtained in the numerical
diagonalization of finite systems. For d 
 0, between one and three peaks are observed in the
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PL spectrum [25]. Their separations are related to the Laughlin gap (for creation of a QE–QH
pair) and to the energy of interaction between the valence band hole and the electron system.

9.5. Charged excitons at a finite magnetic field

One final point is worth mentioning. The numerical calculations described so far were
performed for an idealized model in which electrons and holes were confined to infinitely
thin 2D layers, and only the lowest Landau level was considered. For realistic systems, effects
due to spin, finite width of the quantum well, and Landau-level mixing are very important. The
energy spectra of the simple 2e–1h system calculated at 2S = 20 for parameters appropriate to
a 11.5 nm GaAs/AlGaAs quantum well are shown in figure 16. Two frames correspond to the
magnetic field of B = 13 T and 68 T. We used five electron and hole Landau levels (n � 4) in
the calculation, with the realistic magnetic field dependence of the hole cyclotron mass and the
appropriate Zeeman splittings. The interaction matrix elements included finite (and different)
effective widths of electron and hole quasi-2D layers.
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Figure 16. The energy spectra (binding energy versus angular momentum) of the two-electron–
one-hole system calculated on a Haldane sphere with the Landau-level degeneracy of 2S + 1 = 21.
Five electron and hole Landau levels are included, and the parameters are appropriate for the
11.5 nm GaAs quantum well in the magnetic field of B = 13 T (a) and 68 T (b).

There are a number of bound X− states in both frames, in contrast to only one singlet
bound state at B = 0 or only one triplet bound state predicted for an idealized system at
infinite B. Three of these bound states are of particular importance. The X−

s and X−
tb (‘b’ for

‘bright’), the lowest singlet and triplet states atL = S, are the only well-bound radiative states,
while X−

td (‘d’ for ‘dark’) has by far the lowest energy of all non-radiative (L �= S) states. The
dark triplet state X−

td is the state discussed in the preceding sections; it is the only bound state in
the lowest Landau level, but unbinds at low magnetic fields. The bright singlet state X−

s is the
only bound state at B = 0, but unbinds at very high fields due to the hidden symmetry. These
states cross at B ≈ 30 T, as predicted in an earlier calculation [27]. The bright triplet state
X−

tb has been discovered very recently [28]. It occurs only at intermediate fields and crosses
neither X−

s nor X−
td. It has larger PL intensity than the X−

s state.
Although an isolated X−

td is non-radiative because of the angular momentum selection
rule, its collisions with other X−s or with electrons (which break the translational symmetry)
could be expected to allow for X−

td recombination. However, the Laughlin correlations limit
high-energy collisions at low filling density (ν ∼ 1/5 or less) and the PL intensity of a dark
X−

td remains very low also in the presence of other particles [28]. In consequence, the X−
td is not

seen in PL, and there is no contradiction between experiment [29], which sees recombination
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of a triplet state at the energy above the singlet state up to 50 T, and theory [27], which predicts
that the lowest triplet state crosses the singlet at roughly 30 T.

10. Summary

We have introduced the Jain CF mean-field picture and shown how the low-lying states
can be understood by simple addition of angular momentum. The mean-field CF picture
gives the correct spectral structure not because of some cancellation between Chern–Simons
and Coulomb interactions beyond the mean-field level, but because it selects a low-angular-
momentum subset of the allowed multiplets that avoids the largest pair repulsion. The Laughlin
correlations, which describe incompressible quantum fluid states, depend critically on the
electron pseudopotential being of ‘short range’ (by which we mean that V (L12) increases
more quickly than L12(L12 + 1)). The validity of Jain’s picture also depends upon V (L12)

being of short range. The pseudopotential describing quasiparticles of a Laughlin condensed
state display short-range behaviour only at certain values of L12. We have used this fact
to explain why only certain states in the CF hierarchy give rise to incompressible states of
the quasiparticle fluid (or daughter states in the hierarchy). The pseudopotentials Vn(L12)

for higher Landau levels (n > 0) do not display short-range behaviour at all values of L12,
implying that Laughlin-like correlations will not necessarily result at ν ′ = 2p + ν, where p is
an integer and ν is a Laughlin–Jain filling factor. The CF ideas have been applied successfully
to multi-component plasmas containing different types of fermions with the prediction of
possible incompressible fluid states for these systems. Finally, the energy spectrum and PL of
electron–hole systems can be interpreted in terms of CFs and Laughlin correlations.

Acknowledgments

The authors gratefully acknowledge the support of Grant DE-FG02-97ER45657 from the
Materials Science Programme—Basic Energy Sciences of the US Department of Energy. They
wish to thank P Hawrylak, P Sitko, I Szlufarska, and K-S Yi for helpful discussions on different
aspects of this work.

References

[1] Heinonen O 1998 (ed) Composite Fermions: a Unified View of the Quantum Hall Regime (Singapore: World
Scientific) contains the following review articles:

Jain J K and Kamilla R K, p 1
Simon S H, p 91
Lopez A and Fradkin E, p 195
Murthy G and Shankar R, p 254
Kirczenow G and Johnson B L, p 307
Willet R L, p 349
Smet J H, p 443

[2] Jain J K 1994 Science 266 1199
Jain J K 1991 Adv. Phys. 41 105
Johnson B L and Kirczenow G 1997 Rep. Prog. Phys. 60 899

[3] Proc. Int. Conf. on Electronic Properties of Two-Dimensional Systems 1975–1999 Surf. Sci.
[4] von Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[5] Tsui D C, Störmer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[6] Anderson P W 1958 Phys. Rev. 112 1900
[7] Laughlin R B 1981 Phys. Rev. B 23 5632
[8] Laughlin R B 1983 Phys. Rev. Lett. 50 1395



R298 J J Quinn and A Wójs
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